Write
34 無名さん
ロジスティック写像(ロジスティックしゃぞう、英語: logistic map)とは、xn+1 = axn(1 − xn) という2次関数の差分方程式(漸化式)で定められた離散力学系である。単純な2次関数の式でありながら、驚くような複雑な振る舞いを生み出すことで知られる。ロジスティックマップ[1][2][3]や離散型ロジスティック方程式(英語: discrete logistic equation)[4][5][6]、単に2次写像族[7][8]や2次関数族[9][10]とも呼ばれる。
35 無名さん
ロジスティック写像の a はパラメータと呼ばれる定数、x が変数で、適当に a の値を決め、最初の x0 を決めて計算すると、x0, x1, x2, … という数列が得られる。この数列を力学系分野では軌道と呼び、軌道は a にどのような値を与えるかによって変化する。パラメータ a を変化させると、ロジスティック写像の軌道は、一つの値へ落ち着いたり、いくつかの値を周期的に繰り返したり、カオスと呼ばれる非周期的変動を示したりと様々に変化する。
36 無名さん
ロジスティック写像を生物の個体数を表すモデルとして見る立場からは、変数 xn は1世代目、2世代目…というように世代ごとに表した個体数を意味しており、ロジスティック写像とは現在の個体数 xn から次の世代の個体数 xn+1 を計算する式である。生物個体数モデルとしてのロジスティック写像は、ある生物の個体数がある環境中に生息し、さらにその環境と外部との間で個体の移出入がないような状況を想定しており、xn は正確には個体数そのものではなく、その環境中に存在できる最大個体数に対する割合を意味する。微分方程式で個体数をモデリングするロジスティック方程式の離散化からもロジスティック写像は導出でき、「ロジスティック写像」という名もそのことに由来する。
37 無名さん
後で詳述するように、ロジスティック写像は生き物の個体数の変化を考える式として世に広まった側面を持つ[26]。この場合、xn は、ある世代における生き物の個体数を、生息環境で可能な最大生息個体数で割った値を意味している[27]。差分方程式 (1-2) によって、n 世代目の個体数から n+1 世代目の個体数が計算できるというのが、生物個体数モデルとしてのロジスティック写像の意味である[28]。個体数が増えていくと、個体数の増加速度は下がってくるだろうから、この効果をロジスティック写像では (1 − xn) という項で取り入れている[29]。例えば、ある世代で個体数が最大生息個体数に近くて xn = 0.9999 だとすれば 項 (1 − xn) は 0 にとても近い数値になるので、次の世代の個体数 xn+1 は急激に減ることになる[30]。
38 無名さん
「ロジスティック写像」の名の中に出てくる写像とは、ある集合の要素をまたある集合の要素に対応させる規則を指す用語である[31]。関数に似たようなものだが、関数を数以外の集合も扱うような場合も含めてより一般化したのが写像といえる[32]。写像という視点からは、ロジスティック写像は実数の1点を実数の1点へ対応させる規則だといえる[33]。ただし、「関数」と「写像」に数学全体で共有されている厳密な呼び分けは存在しておらず、実際のところ、どちらの言葉を使うかは各分野の習慣に依るところが大きい[34]。力学系分野では、式 (1-2) のような差分方程式を写像として捉え、写像という語で呼ぶことが多い[35]。