41 無名さん
入力と結果が単純な比例関係で結ばれているようなシステムを線形といい、比例関係で表すことができないようなシステムを非線形という[46]。ロジスティック写像は、考えられる限りでもっとも単純な非線形関数である2次関数で定義される[47]。しかし、その非常に簡単な式とは裏腹に、ロジスティック写像は非常に複雑な振る舞いを生み出す[48]。2次関数の繰り返し計算という設定が現代的な数学の主題の一つであり、豊饒な数学理論を引き起こす[49]。ロジスティック写像には「思いもよらぬ奥深い内容」[50]「力学系で起こる数多くの最も重要な現象」[51]、そして「信じられないような複雑な振舞い」[52]が含まれている。後述するようにロジスティック写像ではカオスという現象が現れ、カオス入門の好適な題材でもある[53]。
42 無名さん
前述のように、ロジスティック写像には生物の個体数の変動を考えるモデルとしての側面がある。このとき、ロジスティック写像の変数 x は生物の個体数を最大生息数で割った値であったから、x が取り得る数値は 0 ≤ x ≤ 1 の間に限られる[54]。そういった事情もあり、ロジスティック写像の変数の範囲を区間 [0, 1] に限って、その振る舞いが議論されることが多い[55]。
43 無名さん
変数を常に 0 ≤ x ≤ 1 に限定しようとすると、必然的にパラメータ a が取れる範囲は 0 から 4 まで (0 ≤ a ≤ 4) に限定される[56]。なぜならば、xn が [0, 1] の範囲内にあれば、xn+1 の最大値は
a
/
4
となっている[57]。したがって、a > 4 では xn+1 の値が 1 を超える可能性が出て来てしまう[56]。一方、a が負のときは、x が負の値を取るようになってしまう[58]。
a
/
4
となっている[57]。したがって、a > 4 では xn+1 の値が 1 を超える可能性が出て来てしまう[56]。一方、a が負のときは、x が負の値を取るようになってしまう[58]。