50 無名さん
1変数のロジスティック写像は、系としての自由度あるいは次元は 1 である[306]。一方で実際の自然界では、時間的に乱れるだけでなく、多数の空間自由度を持ち空間的にも乱れるような多自由度のカオスが多いと考えられる[307]。あるいは、カオス的運動を行う振動子の同期現象も研究対象である[308][309]。こういったものを調べるために、差分方程式(写像)を多数結合させる結合写像の手法がある[310][309]。結合写像モデル研究の題材として、ロジスティック写像がしばしば採用される[311]。その理由には、ロジスティック写像自体はすでにカオスの典型的モデルとしてよく調べられており、その蓄積があることが挙げられる[312]。
51 無名さん
コンピューターシミュレーションや情報セキュリティ分野では、計算機で擬似乱数を作成することが重要な技術の一つで、擬似乱数を作る手法の一つとしてカオスの活用が考えられる[324]。カオスからの擬似乱数生成器で十分な性能を持つものはまだ実現されていないが、これまでにいくつかの手法が提案されてきた[324]。ロジスティック写像についても、これまでにカオスに基づく擬似乱数生成器の可能性が複数の研究者たちによって調べられてきている[234][325][326]。
52 無名さん
ロジスティック写像の擬似乱数生成には、パラメータ a = 4 がよく利用されている[327][328][329]。歴史的にも、後述の通り、電子計算機の誕生から間もない1947年にスタニスワフ・ウラムとジョン・フォン・ノイマンも a = 4 のロジスティック写像を使った擬似乱数生成器の可能性を指摘している[330]。しかし、ロジスティック写像 fa=4 の点の分布は、式 (3-17) で示されるような分布になっており、出てくる数値が 0 と 1 の近くに偏る[234]。そのため、偏りのない一様乱数を得るためには何らかの処理が必要となる[234]。